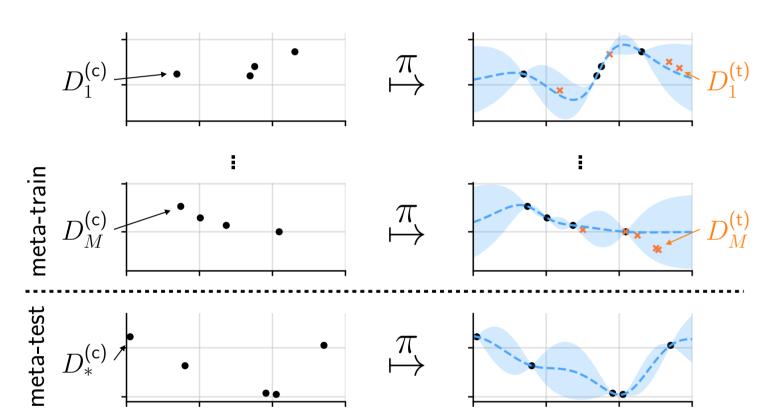


Autoregressive Conditional Neural Processes

Wessel P. Bruinsma^{*12}, Stratis Markou^{*2}, James Requiema^{*2}, Andrew Y. K. Foong^{*1}, Tom R. Andersson³, Anna Vaughan², Anthony Buonomo², J. Scott Hosking³⁴, Richard E. Turner¹² *Equal contribution, 1 Microsoft Research Al4Science, 2 University of Cambridge, 3 British Antarctic Survey, 4 The Alan Turing Institute

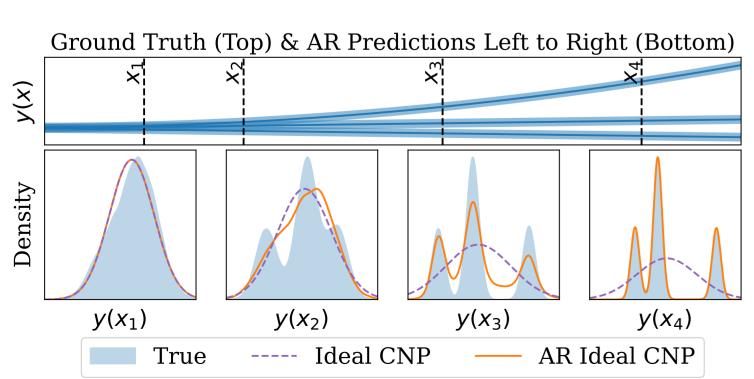
• AR CNPs: take a CNP and feed predictions back into the model in an autoregressive fashion. \checkmark A "free" performance boost: no modifications to model or training procedure!

Meta-Learning


• In meta-learning, we have a meta-data set:

$$(D_m)_{m=1}^M$$
 with $D_m = D_m^{(c)} \cup D_m^{(t)}$

• Learn to predict $D_m^{(t)}$ (*) given $D_m^{(c)}$ (•):



predictions \mathcal{P}

Theoretical Analysis of Idealised Setting

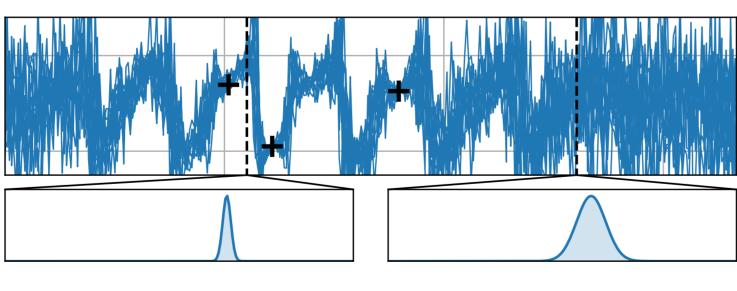
- Analyse idealised setting of **infinite data** and infinite capacity.
- \Rightarrow moment-matched posterior prediction map!
- **Prop. 2.1:** In this setting, CNPs perform better than GNPs.

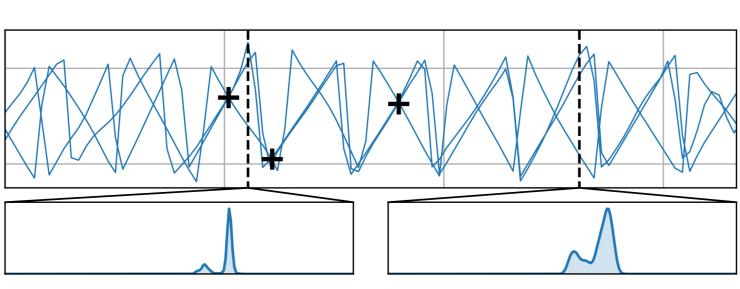
Neural Processes

• A neural process is a parametrisation of

data sets

using neural networks.


- $q_{\theta}(\mathbf{y} \mid \mathbf{x}, D)$: the density of $\pi_{\theta}(D)$ at \mathbf{x} .
- Training:


$$\theta \in \operatorname*{arg\,max}_{\theta \in \Theta} \sum_{m=1}^{M} \mathbb{I}$$

- \checkmark Extremely flexible and versatile \checkmark Fast, probabilistic predictions
- \checkmark Simple to train
- ✓ Work well in practice

Synthetic Experiment on Sawtooth Data

Sample of ConvCNP [4]:

Paper: https://wessel.ai/pdf/arcnps

✓ Produces **correlated** and **non-Gaussian** predictions without requiring approximations. X However, depends on number and order of data, and requires multiple forward passes.

- $\pi_{\theta}: \mathcal{D} \rightarrow \mathcal{P}$ stochastic processes
 - $\log q_{\theta}(\mathbf{y}_{m}^{(\mathsf{t})} \mid \mathbf{x}_{m}^{(\mathsf{t})}, D_{m}^{(\mathsf{c})})$

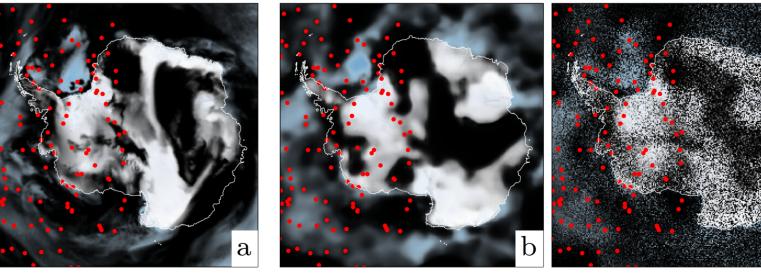
Autoregressive Conditional Neural Processes (AR CNPs)

- Let $q(\mathbf{y} \mid \mathbf{x}, D)$ be a Conditional Neural Process [CNP; 1], possibly an existing/pretrained one!
- **AR CNPs:** feed predictions of CNP autoregressively back into the model:

 $q^{(\mathsf{AR CNP})}(\mathbf{y}_{1:3} \mid D) = q(y_1 \mid x_1, D) q(y_2 \mid x_2, D \cup (x_1, y_1)) q(y_3 \mid x_3, D \cup (\mathbf{x}_{1:2}, \mathbf{y}_{1:2})).$

- Neural AR models certainly not new. Running neural processes in AR mode not yet explored!
- ✓ A "free" performance boost: no modifications to model or training procedure!

	Correlated preds	Non-Gaussian preds	Exact training	Consistent preds
Conditional NPs [1]	×	\checkmark	\checkmark	\checkmark
Gaussian NPs [2]	\checkmark	×	\checkmark	\checkmark
Latent-variable NPs [3]	\checkmark	\checkmark	×	\checkmark
Autoregressive CNPs	5 🗸	\checkmark	\checkmark	×


× However, depends on number and order of data, and requires multiple forward passes of the CNP.

Real-World Experiment on Cloud Coverage Data

• AR ConvCNP spatially interpolates simulated cloud cover observations over Antarctica:

Ground truth

AR ConvCNP sample ConvCNP sample ConvLNP sample

References

- [1] M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. J. Rezende, and S. M. A. Eslami, "Conditional neural processes," in Proceedings of 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 80, PMLR. 2018.
- [2] S. Markou, J. Requeima, W. P. Bruinsma, A. Vaughan, and R. E. Turner, "Practical conditional neural processes via tractable dependent predictions," in Proceedings of the 10th International Conference on Learning Representations, 2022.
- Applications of Deep Generative Models Workshop, 35th International Conference on Machine Learning, 2018.
- [4] J. Gordon, W. P. Bruinsma, A. Y. K. Foong, J. Requeima, Y. Dubois, and R. E. Turner, "Convolutional conditional neural processes," in Proceedings of the 8th International Conference on Learning Representations, 2020.


Code: https://github.com/wesselb/neuralprocesses

• **Same ConvCNP**, but run in AR mode:

Alan Turing

ConvGNP sample

[3] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W. Teh, "Neural processes," in *Theoretical Foundations and*